Задания III тура

Открытой международной студенческой Интернет-олимпиады по математике (2023 год)

Задание 1

В игровом зале за 5 долларов дают 3 жетона для игры и одну конфету в подарок. При возврате двух неиспользованных жетонов для игры возвращают 3 доллара и дают еще конфету в подарок. Производятся только такие обмены. У зашедшего в игровую комнату мальчика имелись только доллары. В результате проведенных обменов у него уменьшилось количество долларов, но появилось ровно 50 конфет (жетонов не оказалось). Сколько долларов мальчик потратил на эти 50 конфет?

Ответ: 10.

Задание 2

Пусть x_0 — точка локального экстремума дважды дифференцируемой функции f(x). Известно, что для всех x выполняется равенство $f'(x) = 1 - xf^2(x)$. Определить, является точка x_0 точкой минимума или точкой максимума.

Ответ: x_0 – точка максимума.

Задание 3

Для любой точки N квадрата Q с вершинами в точках (100;100),(-100;100),(-100;-100),(100;-100) и любой точки M фигуры F скалярное произведение векторов \overline{ON} и \overline{OM} не превосходит 100 $(\overline{ON}\cdot\overline{OM}\leq 100),$ здесь точка O — начало координат. Найти площадь фигуры F.

Ответ: 2.

Задание 4

Сколько существует способов расставить по четыре элемента каждого из четырех различных типов по клеткам клетчатой доски 4×4 так, чтобы в каждой строке и каждом столбце стоял ровно один элемент каждого типа? Ответ: 576.

Задание 5

Функция f(x) при всех $x \in R$ удовлетворяет уравнению $f(x) + \frac{1}{2} \sin f(x) = x$.

Найти значение интеграла $\int_{0}^{\pi} f(x)dx$.

Ответ:
$$\frac{\pi^2}{2} - 1$$
.

Задание 6

В пространстве задан равнобедренный прямоугольный треугольник ABC. Пусть $A_1B_1C_1$ — его ортогональная проекция на некоторую плоскость $(A_1$ — проекция точки A, B_1 — проекция точки B, C_1 — проекция точки C). Известно, что $A_1B_1C_1$ также является равнобедренным прямоугольным треугольником. Найти все возможные значения отношения длины катета AB к длине катета A_1B_1 .

Ответ: 1,
$$\frac{1+\sqrt{5}}{2}$$
.

Задание 7

Даны квадратные матрицы A и B такие, что $B^2 = 0$ и $A^2B + BA^2 = 2A^3$. Доказать, что для любых таких матриц $A^{12} = 0$.

Задание 8

Даны три положительных числа a, b, c такие, что $\sin a \cdot \sin b \cdot \sin c = \frac{3}{\pi} \cdot abc$.

Доказать, что
$$a+b+c>\frac{\pi}{6}$$
.

Задание 9

N человек имеют по некоторому количеству яблок (N > 2). Первый человек взял из своих яблок половину и еще одно яблоко и разделил эти яблоки поровну между остальными. Затем так же последовательно поступают и остальные (каждый берет половину всех накопившихся у него яблок и еще одно яблоко и делит эти яблоки поровну между остальными). В результате у всех оказалось по a яблок. Известно, что все яблоки остались целыми. Каким наименьшим (в зависимости от N) может быть a?

Ответ:
$$a = (N-1)^N - 2$$
.

Задание 10

Дан многочлен с целыми коэффициентами $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. Известно, что a_n — нечетное число и $P_n(k), P_n(k+1)$ — нечетные числа для некоторого целого k. Доказать, что этот многочлен рациональных корней не имеет.